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A characterization and classification result is established

which applies to Binomial, Negative Binomial or Poisson signals in

additive noise. The result unifies and generalizes three separate

characterization results appearing in the recent literature.

( I. INTRODUCTION.

The distributions of discrete signals in additive noise have

been characterized via systems of differential equations satisfied

by their probability mass functions in a series of recent papers.

.( 2), t -n ). These papers have dealt with signal distribu-

tions belonging to various discrete exponential familieso and each

characterization result has roughly been in terms of equations of

the form

3- f(xIO) - c[f(x-lIQ') - f(xle')).

While the main results in each of these works bear a definite re-

semblance, the proofs have differed substantially, and the regularity

required of the signal distribution has varied among the specific

models studied. For example, only the characterizing result for
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Pascal signals in noise [43 require the existence of moments of all

orders. We have sought here to present a single theorem which

identifies the commonality of these earlier results.

The present result relies on a new and general parametrization

of a discrete family of distributions which includes all discrete

convolutions of Binomial, Negative Binomial (Pascal) and Poisson

distributions as special cases. The proof of our characterization

and classification theorem differs radically from the individual

proofs of the characterization results in the papers cited. More-

over, the theorem requires somewhat weaker assumptions than

cuimulatively contained in previous results. In particular, no

moment conditions are required in the present result.

II. TWO THEOREMS.

The following notation is used in the results of this section:

2Z for the set of all integers, and B, ,B, and P for the binomial,

negative binomial and Poisson distributions respectively.

Theorem 1. Let Z, tX, :nEZU (a),p E C0,+w)I be random

variables on the nonnegative integers. Assume the distribution

of Z is independent of (n,p), and assume moreover that

Z Xoi Xn, V n~p.

Then the differential equation

(1) ~ P(X n,1 ) P(X-x-Iin -nlniO

-P(X - xln-l -1' I) (n 0 O)
n
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is equivalent to

(2) Xn,lk Yn,P + Z

where Z and [%,,,) are independent, and

( B(n,) if O<nCEZ and p<n
n n

(3O) '1 - ?tB(-n, -) if O>nEZ

S() if n--

Remark: While the case 0 < n E ZL and 4 > n appears to be unclassified

in (3) above, we note that the differential equations in (1) do not

apply for this case since the parameter 0 - is negative and then

probability functions on the right side of (1) are therefore undefined.

Proof. First we vil show that the variables Y defined in (3)

satisfy (I). If n - a we have

*P(Y xj,)- j{ It}

- (.e" &,t x) + (e" xgx1x I)

- (e6 x'l/(x)l) + (e'h Xl/xt)

- ( x-leo,) - (, -,M.1

which is (1), since 0 a0-Oup -I- and ---.

For O<n EZ whave



=71

-lsP(Yuuxln,i&) -11(50 ) ( . ).

x n- n-

n1 -(n-i)] L (n-i)-I

n-I ni

X- (n-i-) - nl-x1
(n I fiJ an- n Ii

n- n-i

*P(Yinz-iln-I, (!-- ),)- P(Y xin-1, (n Ii

which is (1).

For O>n EZ, vehave

P( -~xI (a ) 

itx 'fl' -n J

-nixI -- x n-x
C vi~x. n



n-I

x n -(n-)

n-i n-1 n -

n n

*It is now easy to show that the variables X nPdefined by (2)

satisfy (1), since

x
P(Xaxln,) -fPZk)P(Yx-kln,p).

k-O

Now assum equation (1) holds. To prove that (2) and (3) hold,

we use the following result:

LemaL If equation (1) holds, then we have

(4) . ( xl,)

-n(n-l)... tn-k91) ~J(_ 4 )kA (k) P(X x 91nkn-W

for Co" + (,9), 0 UI e Ez U E03, x-.0,102,., and k-1.,2.3..
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Rears The sum on the right ts actually a finite sum, since the

summand is 0 whenever A > uiincx,k). This follows from the def i-

nition of k and the assumption that X has support on the non-

negative integers. Also, for n .c the correct expression is

obtained by letting n .

Proof of Lemma 1. The proof is by induction on k. The

case k-I1 is just equation (1). Now assume (4) holds. Then

k+l
a- P (X -xj nL)

n(n-l) ... (n-kil) O -k(n-k
L 3 (-l)k k) P(X- x-Ajn-k,(--'- $L

n0 Ag a~ 0

which, by (1) and the chain rule,

. n(n-1)...(n-1c1.l) I (-I)k-A (k )P(xhhXA1nk-l,(n-k-l)0)

n- A n0

-~ A- n
nAA-

A-0A A1

(-I )P(X-x-An.(k+l).(" W11

which copletes the proof of (4).
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Recall that for any real number r, and any k E 2L, the binomial

coefficient r ) is defined by (see [l], p. 50)

= ((r-) ... (r-k+l) if k > 0

0 if k < 0.

Lenmma 2. If equation (1) holds, and p.< Inl, then

xA

(5) PMX ixjn,p) - " (-xA( n , (ll)f if 0#nEZZ
£- n

and

(5) P(X- xle.,pj) - (--) -'

for x-0,1,,...

Proof. Use Lea 1 in the Taylor expansion for P(X -xjn~p)

about P -nO0

rn-1 k k
(6) P(X-xng. 1. .ok

m
J +-P(Xxln,&) I * A

where 0 P -C P. When no o the remainder term is equal1 to

(7) { IL

Since the quantity in brace. is a polynomial of degree 5 x in a ,

* expresuion C7rtdebds to 0 as rn-e. When 0 < n C Z, the remainder

term is equal to 0 whenever . > n. When 0 > n C Z, we have
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(8)~~~ ~~ [I (uf,) n(n-l) ... (n-$-l) I *-

=(-n -l)I U , m
(-n-l, m, In" 0 "

By Stirling's approximation,

( .-n -1+(1/2) n-m+l

a e

-n-i, -n+f.l.2) m+(1/2) n+l=(-n+m-t)'nt(nmmtz e

S(n-+%.)-n-1(1 +-n+(1/2)) 1/2 ( -r_(I/2)) en+l

,m m

As a- the product of the last three factors converges to

*-n+(1/2) n+l .- /2
1 /  • • . Thus, for m sufficiently large,

x
(-n4t-1)1/ml ia bounded by a polynomial in m . Since ,, (M) is a

A 0

polynomial in m, the assumption -- < 1 forces the right-handInj
expression in (.8) to tend to 0 as a- m. (This is the only time

Suse IL < InI.)

for any nonmsro a E Z and any nonnegative j, < 'in, we may

now write, by virtue of (4),
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- k k
P(X X n+) - -k P(Xnxj np) I

k-O 2k0

x k- n k k .
- 1( ) )()() & -)(.)P(Z

k-O 1-0O A n

=O k-O k A

Nowv,

k- (k)(n)( L) k A
k=O k-A "

k=0G

n k+A

k-O (l1 A k -)

- () '~ Ff (nAt. k
k-O

Application of equation (8.7), page 51 of [1], to this latter expression

yields (5). Moreover,

x k
P(X xjin,P) = & P(Z-xX-)(-l)k-A(k) ML

kinG A-0O A kI

E JP(Z -X-L)' -1)kZ
A-0OA k-A (k-A)!

x k k+A
* i ~P(Z -X-L)A kh
A-0 k-O k

.Z 2JP(Z-x-.) I- e",

=0 It!A

which is (5'). This completes the proof of Lemn 2.
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Equation (5') identifies X as asum Y +Z where Y and Z

are independent and Y '~P~.Assume next that 0 < n E Z1. Then

(5) becomes

P(X-xln,p) r, P (Zm x-L) (1k) (lil

Although this equation was derived without using the assumption

~ n, the right-hand side is not a probability mass function if

p > n. With this restriction, the above equation identifies X

as a sum Y + Z~ whiere Y and Z are independent and Y f~,1)

Finally, let 0 > n E 71. For a fixed value of p, consider

first any n such that th< jnj. Then by (5)

P(Xuxjn,L) E P(Zum x-.O)( F)(ln n
A-0-

X nA1 - -n
- P(Z -x-A) A~ )-

Thus X -P Y + Z, where Y and Z are independent and

Y Ow710 (-n,

-- To finish this case, we need to show that X OPhas the

indicated form even when 11 Z I nj . This is accomplished by the

following result:

3. Assume that equation (1) holds. If X nP- Y + Z

*where Y and Z are independent and Y - 1 i (-n, and



j ;n <-2 *then X -,, Y-I- Z where Y' and Z are independent and
Y'-I? I (- n+l ,~j

Proof. By (1) we have

P(X- xn+l,&) -C + J'P(X -x-ljn,(ji& (- x 1

- x +)A -(n+l) (n+l)

A-0 A ~ (n+l)+in1)-

by hypothesis. and the fact that the mass function for Z + Y, where

Y-72(-(n+l), - U--) obeys equation (1). The value of the

constant C may be found by evaluating that last equation at P 0:

P(Z X) C + P(Z X)

~>C *0. This completes the proof of the lemma and the theorem.

An alternative unifying result, containing nonstochastic as

veil as stochastic solutions, is as follow

Theorem 2. Let ff(eIn,r,p) : (n,r,p) e r) be a family of

functions on the nonnegative integers, where r - C(n~rij.) :n IE Z
0<r +a, 0 < '+0] Define f (xin,r,O) 0 for x<O0. Assume

that

(9) - f(xIn'r'&) -n f(x-lIn-1,r,&) - f(xjn-lr.&)]
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for n #0. If we assumne f(xcjO,r,p&) and f(xln,r,O) are functions

of x alone, and assume moreover that

f(x) i f(xlO,r,pj) - f(xlnrO) ix~r~n.p

then

Ix

(10) f(xln'r,j) i (X-A)(n(J)~
A-0 ~ A nr n

for n#O0, shereqn- CI if n < }0 Of course, (conversely)

any function of the form (10) satisfies (9).

Remarks. The function

n n-

will be a probability mass function on (0,1.2,....] for a certain

subset of r . When n >0 and 0 < n we have

-- - -mass function of 13(n, 1k).

When n <O0 we have

g(xln,-n,i) - (**fl*I*Il X~ -n

- mass function of ?B (-n, -.AL-)
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As n - in both of the above cases, we have

g(xjn, Int j )- g(xj~m,+m,Il) mass function of P(p.).

* For the special case r - jnf, equation (9) becomes

(W) - f(xln, I nj , pj) - f(x-l In-1, I n , p.) -f(xin-1, Jnj p)

Thus, if we enlarge the parameter apace to

rA.r u o(~~g): < pj < +)

Theorem 2 has the following

Corollary 1. The family (f(.jn.r~p) : (n,r,pL) E r,3 satisfies

(9') iff the following conditions hold:

(a) f (xl n, I nt Ip) is not a probability mass funct ion i f

n > 0 and pj > n;

(b) when f (z) is the mass function of a r.v. Z on the non-

negative integers, f (xjn, Jlt I p) is the mass function of the r.v.

Y + Z, where Y and Z are independent and (3) holds.
Yn,jj .

The proof of Theorem 2 is obtained from the corresponding

portion of the proof of Theorem 1 by replacing 'In" by "a nr"I in

certain appropriate places.
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Sketch of Proof. Use induction on k to show that

2-f~lnr~) - 1.. (nk (-1) k- (k fx-ILn-kr&,.
Z~~k (onr)' twA

Next, show that f(xln,ru) is represented by its Taylor series at

-O, provided n > O, or n < 0 and p < -n (as in Lema 2):

fk)n,r,.. - kn-.

k O k I (a n r )k 
£=0

= ... = Vf(x-L)()( j)( -( I-
1-0 cn n

Now remove the restriction I < -n when n < 0 by an argument

similar to the proof of Lemma 3.

.. . . . . . . . . ..S- . . . . .. II [ II II ' -. . . . =. . "" -
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